Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction
نویسندگان
چکیده
Six popular approaches of «NIR spectrum–property» calibration model building are compared in this work on the basis of a gasoline spectral data. These approaches are: multiple linear regression (MLR), principal component regression (PCR), linear partial least squares regression (PLS), polynomial partial least squares regression (Poly-PLS), spline partial least squares regression (Spline-PLS) and artificial neural networks (ANN). The best preprocessing technique is found for each method. Optimal calibration parameters (number of principal components, ANN structure, etc.) are also found. Accuracy, computational complexity and application simplicity of different methods are compared on an example of prediction of six important gasoline properties (density and fractional composition). Errors of calibration using different approaches are found. An advantage of neural network approach to solution of «NIR spectrum–gasoline property» problem is illustrated. An effective model for gasoline properties prediction based on NIR data is built. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
A Comparative Study Concerning Linear and Nonlinear Models to Determine Sugar Content in Sugar Beet by Near Infrared Spectroscopy (NIR)
This paper reports on the use of Artificial Neural Networks (ANN) and Partial Least Squareregression (PLS) combined with NIR spectroscopy (900-1700 nm) to design calibration models for thedetermination of sugar content in sugar beet. In this study a total of 80 samples were used as the calibration set,whereas 40 samples were used for prediction. Three pre-processing methods, including Multiplic...
متن کاملPrediction of Freshness Quality and Phosphate Residue of White Shrimp Products Using Near-Infrared Spectroscopy
Background: The manufacturing of frozen shrimp is an important industry for the economy of Thailand. The objective of this study was to use Near-Infrared (NIR) spectroscopy to determine the freshness quality, including Total Volatile Basic Nitrogen (TVB-N) and Water Holding Capacity (WHC) of white shrimp (whole and chopped shrimp) and phosphate residues of shrimp. Methods: Sixty white shrimp ...
متن کاملPotential of Near-Infrared Reflectance Spectroscopy (NIRS) to Predict Nutrient Composition of Bromus tomentellus
Determination of forage quality of available species is one of the fundamentalfactors for the management of rangelands. Near-Infrared Reflectance Spectroscopy (NIRS)was used to analysis the Nitrogen (N), Acid Detergent Fiber (ADF), Dry MatterDigestibility (DMD) and Metabolizable Energy (ME) content of three phenological stages(vegetative, flowering and seeding) of Bromus tomentellus samples in ...
متن کاملDevelopment of near infrared reflectance spectroscopy (NIRS) calibration model for estimation of oil content in a worldwide safflower germplasm collection
The development of NIRS calibration model as a rapid, precise, robust, and cost-effective method to estimate oil content in ground seeds of worldwide safflower germplasm collection grown under different agro-climatic conditions was the key objective of this research project. The oil content was measured by accelerated solvent extraction method in a total of 328 samples collected across 2004 (16...
متن کاملSimultaneous determination of methanol and ethanol in gasoline using NIR spectroscopy: effect of gasoline composition.
Near infrared (NIR) spectroscopy was employed for simultaneous determination of methanol and ethanol contents in gasoline. Spectra were collected in the range from 714 to 2500 nm and were used to construct quantitative models based on partial least squares (PLS) regression. Samples were prepared in the laboratory and the PLS regression models were developed using the spectral range from 1105 to...
متن کامل